Perimeter generating functions for the mean-squared radius of gyration of convex polygons

نویسنده

  • Iwan Jensen
چکیده

We have derived long series expansions for the perimeter generating functions of the radius of gyration of various polygons with a convexity constraint. Using the series we numerically find simple (algebraic) exact solutions for the generating functions. In all cases the size exponent ν = 1. PACS numbers: 05.50.+q, 05.70.Jk, 02.10.Ox

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistics of lattice animals (polyominoes) and polygons

We have developed an improved algorithm that allows us to enumerate the number of site animals (polyominoes) on the square lattice up to size 46. Analysis of the resulting series yields an improved estimate, τ = 4.062 570(8), for the growth constant of lattice animals and confirms, to a very high degree of certainty, that the generating function has a logarithmic divergence. We prove the bound ...

متن کامل

Osculating and neighbour-avoiding polygons on the square lattice*

We study two simple modifications of self-avoiding polygons (SAPs). Osculating polygons (OP) are a super-set in which we allow the perimeter of the polygon to touch at a vertex. Neighbour-avoiding polygons (NAP) are only allowed to have nearest-neighbour vertices provided these are joined by the associated edge and thus form a sub-set of SAPs. We use the finite lattice method to count the numbe...

متن کامل

0 Statistics of lattice animals ( polyominoes ) and polygons

We have developed an improved algorithm that allows us to enumerate the number of site animals (polyominoes) on the square lattice up to size 46. Analysis of the resulting series yields an improved estimate, τ = 4.062570(8), for the growth constant of lattice animals and confirms to a very high degree of certainty that the generating function has a logarithmic divergence. We prove the bound τ >...

متن کامل

Inversion Relations, Reciprocity and Polyominoes

We derive self-reciprocity properties for a number of polyomino generating functions, including several families of column-convex polygons, three-choice polygons and staircase polygons with a staircase hole. In so doing, we establish a connection between the reciprocity results known to combinatorialists and the inversion relations used by physicists to solve models in statistical mechanics. Fo...

متن کامل

Metric inequalities for polygons

Let A1, A2, . . . , An be the vertices of a polygon with unit perimeter, that is ∑n i=1 |AiAi+1| = 1. We derive various tight estimates on the minimum and maximum values of the sum of pairwise distances, and respectively sum of pairwise squared distances among its vertices. In most cases such estimates on these sums in the literature were known only for convex polygons. In the second part, we t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005